Appendix to Chapter 2

An infinite series can only be differentiated term-by-term if the resulting series converges uniformly. Thus the derivation of

$$
-\frac{\zeta^{\prime}}{\zeta}(\sigma)=\sum_{p} \sum_{r \geq 1} \frac{\log p}{p^{r \sigma}}
$$

given in the notes for $\sigma>1$ can only be justified by the following result.
Example 2.26 The series

$$
\sum_{p} \frac{1}{\left(1-\frac{1}{p^{\sigma}}\right)} \frac{\log p}{p^{\sigma}}
$$

converges uniformly for $\sigma \geq 1+\delta$ for any $\delta>0$.
Proof

$$
\frac{1}{p^{\sigma}} \leq \frac{1}{2^{\sigma}} \leq \frac{1}{2} \quad \text { and so } \quad\left(1-\frac{1}{p^{\sigma}}\right)^{-1} \leq 2
$$

Thus

$$
\sum_{p} \frac{1}{\left(1-\frac{1}{p^{\sigma}}\right)} \frac{\log p}{p^{\sigma}} \leq 2 \sum_{p} \frac{\log p}{p^{\sigma}} \leq 2 \sum_{n=1}^{\infty} \frac{\log n}{n^{\sigma}}
$$

This resulting sum over all integers has been shown to converge uniformly for $\sigma \geq 1+\delta$ for any $\delta>0$ in the Background: Complex Analysis II notes. We repeat it here: Let $M_{n}=(\log n) / n^{1+\delta}$. Then

$$
\left|\frac{\log n}{n^{s}}\right|=\frac{\log n}{n^{\sigma}} \leq \frac{\log n}{n^{1+\delta}}=M_{n}
$$

By looking for a turning point for $(\log x) / x^{1+\delta}$ we know that $(\log n) / n^{1+\delta}$ is decreasing for $n \geq n_{0}$, where n_{0} is the least integer greater than $\exp (1 /(1+\delta))$. For such n

$$
\frac{\log n}{n^{1+\delta}} \leq \int_{n-1}^{n} \frac{\log t}{t^{1+\delta}} d t
$$

Hence

$$
\sum_{n \geq n_{0}} M_{n} \leq \int_{n_{0}-1}^{\infty} \frac{\log t}{t^{1+\delta}} d t
$$

a convergent integral since $\delta>0$. (Integration by parts will show this.) Hence $\sum_{n \geq n_{0}} M_{n}$ and thus $\sum_{n \geq 1} M_{n}$ converge. The result then follows from
the Weierstrass M-test.
Proofs of Lemma 2.18 and Corollary 2.21.
Lemma 2.18 Chebyshev's inequality For all $\varepsilon>0$

$$
(\log 2-\varepsilon) x<\theta(x)<(2 \log 2+\varepsilon) x
$$

for all $x>x_{3}(\varepsilon)$.
Proof Let $\varepsilon>0$ be given. Lemma 2.17 means that there exists a function $\mathcal{E}(x): \psi(x)=\theta(x)+\mathcal{E}(x)$ and $|\mathcal{E}(x)|<C x^{1 / 2}$ for some constant $C>0$. Yet $C x^{1 / 2} \leq \varepsilon x / 2$ for x sufficiently large, i.e. $x>x_{2}(\varepsilon)$. Thus, for such x,

$$
\psi(x)-\varepsilon x / 2 \leq \theta(x) \leq \psi(x)+\varepsilon x / 2
$$

Next apply Corollary 2.16 with $\varepsilon / 2$ in place of ε, to get

$$
(\log 2-\varepsilon / 2) x-\varepsilon x / 2 \leq \theta(x) \leq(2 \log 2+\varepsilon / 2) x+\varepsilon x / 2
$$

valid for $x>\max \left(x_{1}(\varepsilon / 2), x_{2}(\varepsilon)\right)$.
Corollary 2.21 Chebyshev's inequality For all $\varepsilon>0$

$$
(\log 2-\varepsilon) \frac{x}{\log x}<\pi(x)<(2 \log 2+\varepsilon) \frac{x}{\log x}
$$

for all $x>x_{4}(\varepsilon)$.
Proof Let $\varepsilon>0$ be given. Theorem 2.20 means that there exists a function $\mathcal{E}(x): \pi(x)=\theta(x) / \log x+\mathcal{E}(x)$ where $|\mathcal{E}(x)|<C x / \log ^{2} x$ for some constant $C>0$. Yet $C / \log x \leq \varepsilon / 2$ for x sufficiently large, i.e. $x>x_{5}(\varepsilon)$. Thus, for such x,

$$
\frac{\theta(x)-\varepsilon x / 2}{\log x} \leq \pi(x) \leq \frac{\theta(x)+\varepsilon x / 2}{\log x}
$$

Next apply Lemma 2.18 with $\varepsilon / 2$ in place of ε, to $\operatorname{get}(\log 2-\varepsilon) x<$ $\theta(x)<(2 \log 2+\varepsilon) x$

$$
\frac{(\log 2-\varepsilon / 2) x-\varepsilon x / 2}{\log x} \leq \pi(x) \leq \frac{(2 \log 2+\varepsilon / 2) x+\varepsilon x / 2}{\log x}
$$

valid for $x>\max \left(x_{3}(\varepsilon / 2), x_{5}(\varepsilon)\right)$.

Inequalities between $\pi(x)$ and $\theta(x)$.
In Theorem 2.20 we gave an asymptotic relation between $\pi(x)$ and $\theta(x)$. We can, instead give a simple inequality,

$$
\theta(x)=\sum_{p \leq x} \log p \leq \sum_{p \leq x} \log x=\pi(x) \log x .
$$

What is not simple is a lower bound on θ in terms of π.
Lemma 2.27 For all $0<\alpha<1$

$$
\begin{equation*}
\pi(x)-\pi\left(x^{\alpha}\right) \leq \frac{1}{\log x^{\alpha}}\left(\theta(x)-\theta\left(x^{\alpha}\right)\right) . \tag{25}
\end{equation*}
$$

Proof Given $0<\alpha<1$, we have

$$
\pi(x)-\pi\left(x^{\alpha}\right)=\sum_{x^{\alpha}<p \leq x} 1 .
$$

For the primes p counted in this sum we have $x^{\alpha}<p$ which can be rewritten as

$$
1<\frac{\log p}{\log x^{\alpha}} .
$$

Thus

$$
\begin{aligned}
\sum_{x^{\alpha}<p \leq x} 1 & \leq \sum_{x^{\alpha}<p \leq x} \frac{\log p}{\log x^{\alpha}}=\frac{1}{\log x^{\alpha}} \sum_{x^{\alpha}<p \leq x} \log p \\
& =\frac{1}{\log x^{\alpha}}\left(\theta(x)-\theta\left(x^{\alpha}\right)\right) .
\end{aligned}
$$

These inequalities can be used to deduce Chebyshev's inequality for π from Chebyshev's inequality for θ. So, start from the result that for all $\varepsilon>0$

$$
\begin{equation*}
(\log 2-\varepsilon) x<\theta(x)<(2 \log 2+\varepsilon) x \tag{26}
\end{equation*}
$$

for all $x>x_{3}(\varepsilon)$. Then from $\theta(x) \leq \pi(x) \log x$ we get the lower bound on $\pi(x)$:

$$
(\log 2-\varepsilon) \frac{x}{\log x}<\pi(x)
$$

for all $x>x_{3}(\varepsilon)$.

For the upper bound we start from (25) with α to be chosen. Simplify slightly, so

$$
\pi(x) \leq \pi\left(x^{\alpha}\right)+\frac{1}{\log x^{\alpha}} \theta(x)
$$

Then use the trivial $\pi(x) \leq x$ along with the upper bound in (26), though with ε replace by $\varepsilon / 2$, so

$$
\pi(x) \leq x^{\alpha}+\frac{(2 \log 2+\varepsilon / 2) x}{\alpha \log x}
$$

for $x>x_{3}(\varepsilon / 2)$. Now choose $\alpha<1$ sufficiently close to 1 that

$$
\frac{(2 \log 2+\varepsilon / 2)}{\alpha}=2 \log 2+\frac{3 \varepsilon}{4}
$$

i.e.

$$
\alpha=\frac{2 \log 2+\varepsilon / 2}{2 \log 2+3 \varepsilon / 4}=1-\frac{\varepsilon}{8 \log 2+3 \varepsilon} .
$$

Then for such α we have

$$
\pi(x) \leq x^{\alpha}+\left(2 \log 2+\frac{3 \varepsilon}{4}\right) \frac{x}{\log x}
$$

Our choice of α is still <1 so

$$
x^{\alpha} \leq \frac{\varepsilon}{4} \frac{x}{\log x},
$$

for x sufficiently large, i.e. $x>x_{6}(\varepsilon)$. Combining we find that

$$
\pi(x) \leq(2 \log 2+\varepsilon) \frac{x}{\log x}
$$

for $x>\max \left(x_{3}(\varepsilon / 2), x_{6}(\varepsilon)\right)$.

