
Appendix to Chapter 2

An infinite series can only be differentiated term-by-term if the resulting
series converges uniformly. Thus the derivation of
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given in the notes for σ > 1 can only be justified by the following result.
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converges uniformly for σ ≥ 1 + δ for any δ > 0.
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This resulting sum over all integers has been shown to converge uniformly

for σ ≥ 1 + δ for any δ > 0 in the Background: Complex Analysis II notes.
We repeat it here: Let Mn = (log n)/n1+δ. Then
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By looking for a turning point for (log x)/x1+δ we know that (log n)/n1+δ

is decreasing for n ≥ n0, where n0 is the least integer greater than exp (1/(1 + δ)).
For such n

log n

n1+δ
≤

∫ n

n−1

log t

t1+δ
dt.

Hence
∑

n≥n0

Mn ≤

∫ ∞

n0−1

log t

t1+δ
dt,

a convergent integral since δ > 0. (Integration by parts will show this.)
Hence

∑

n≥n0
Mn and thus

∑

n≥1Mn converge. The result then follows from
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the Weierstrass M-test. �

Proofs of Lemma 2.18 and Corollary 2.21.

Lemma 2.18 Chebyshev’s inequality For all ε > 0

(log 2− ε) x < θ(x) < (2 log 2 + ε) x

for all x > x3 (ε).

Proof Let ε > 0 be given. Lemma 2.17 means that there exists a function
E(x) : ψ(x) = θ(x) + E(x) and |E(x)| < Cx1/2 for some constant C > 0. Yet
Cx1/2 ≤ εx/2 for x sufficiently large, i.e. x > x2 (ε). Thus, for such x,

ψ(x)− εx/2 ≤ θ(x) ≤ ψ(x) + εx/2.

Next apply Corollary 2.16 with ε/2 in place of ε, to get

(log 2− ε/2) x− εx/2 ≤ θ(x) ≤ (2 log 2 + ε/2) x+ εx/2,

valid for x > max (x1 (ε/2), x2 (ε)). �

Corollary 2.21 Chebyshev’s inequality For all ε > 0

(log 2− ε)
x

log x
< π(x) < (2 log 2 + ε)

x

log x

for all x > x4 (ε).

Proof Let ε > 0 be given. Theorem 2.20 means that there exists a function
E(x) : π(x) = θ(x)/log x+ E(x) where |E(x)| < Cx/ log2 x for some constant
C > 0. Yet C/ log x ≤ ε/2 for x sufficiently large, i.e. x > x5 (ε). Thus, for
such x,

θ(x)− εx/2

log x
≤ π(x) ≤

θ(x) + εx/2

log x
.

Next apply Lemma 2.18 with ε/2 in place of ε, to get(log 2− ε) x <
θ(x) < (2 log 2 + ε) x

(log 2− ε/2) x− εx/2

log x
≤ π(x) ≤

(2 log 2 + ε/2) x+ εx/2

log x
,

valid for x > max (x3 (ε/2), x5 (ε)). �
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Inequalities between π(x) and θ(x) .

In Theorem 2.20 we gave an asymptotic relation between π(x) and θ(x).
We can, instead give a simple inequality,

θ(x) =
∑

p≤x

log p ≤
∑

p≤x

log x = π(x) log x.

What is not simple is a lower bound on θ in terms of π.

Lemma 2.27 For all 0 < α < 1

π(x)− π(xα) ≤
1

log xα
(θ(x)− θ(xα)) . (25)

Proof Given 0 < α < 1, we have

π(x)− π(xα) =
∑

xα<p≤x

1.

For the primes p counted in this sum we have xα < p which can be
rewritten as

1 <
log p

log xα
.

Thus

∑

xα<p≤x

1 ≤
∑

xα<p≤x

log p

log xα
=

1

log xα

∑

xα<p≤x

log p

=
1

log xα
(θ(x)− θ(xα)) .

�

These inequalities can be used to deduce Chebyshev’s inequality for π
from Chebyshev’s inequality for θ. So, start from the result that for all ε > 0

(log 2− ε) x < θ(x) < (2 log 2 + ε) x (26)

for all x > x3 (ε). Then from θ(x) ≤ π(x) log x we get the lower bound on
π(x) :

(log 2− ε)
x

log x
< π(x)

for all x > x3 (ε).
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For the upper bound we start from (25) with α to be chosen. Simplify
slightly, so

π(x) ≤ π(xα) +
1

log xα
θ(x) .

Then use the trivial π(x) ≤ x along with the upper bound in (26), though
with ε replace by ε/2, so

π(x) ≤ xα +
(2 log 2 + ε/2) x

α log x
.

for x > x3 (ε/2). Now choose α < 1 sufficiently close to 1 that

(2 log 2 + ε/2)

α
= 2 log 2 +

3ε

4
,

i.e.

α =
2 log 2 + ε/2

2 log 2 + 3ε/4
= 1−

ε

8 log 2 + 3ε
.

Then for such α we have

π(x) ≤ xα +

(

2 log 2 +
3ε

4

)

x

log x
.

Our choice of α is still < 1 so

xα ≤
ε

4

x

log x
,

for x sufficiently large, i.e. x > x6 (ε). Combining we find that

π(x) ≤ (2 log 2 + ε)
x

log x

for x > max (x3 (ε/2), x6 (ε)).
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